viernes, 8 de noviembre de 2013

Gases nobles

Los gases nobles son un grupo de elementos químicos con propiedades muy similares: bajo condiciones normales, son gases monoatómicos inodoros, incoloros y presentan una reactividad química muy baja. Se sitúan en el grupo 18 (8A) 1 de la tabla periódica (anteriormente llamado grupo 0). Los seis gases nobles que se encuentran en la naturaleza son helio (He), neón (Ne), argón (Ar), kriptón (Kr), xenón (Xe) y el radiactivo radón (Rn).
Las propiedades de los gases nobles pueden ser explicadas por las teorías modernas de la estructura atómica: a su capa electrónica de electrones valentes se la considera completa, dándoles poca tendencia a participar en reacciones químicas, por lo que sólo unos pocos compuestos de gases nobles han sido preparados hasta 2008. El xenón reacciona de manera espontánea con el flúor (debido a la alta electronegatividad de éste), y a partir de los compuestos resultantes se han alcanzado otros. También se han aislado algunos compuestos con kriptón. Los puntos de fusión y de ebullición de cada gas noble están muy próximos, difiriendo en menos de 10 °C; consecuentemente, sólo son líquidos en un rango muy pequeño de temperaturas.

Nombre
Kriptón
Número atómico
36
Valencia
0
Estado de oxidación
-
Electronegatividad
-
Radio covalente (Å)
1,89
Radio iónico (Å)
-
Radio atómico (Å)
-
Configuración electrónica
[Ar]3d104s24p6
Primer potencial de ionización (eV)
14,09
Masa atómica (g/mol)
83,80
Densidad (g/ml)
2,6
Punto de ebullición (ºC)
-152
Punto de fusión (ºC)
-157,3
Descubridor
Sir Ramsay en 1898


Kriptón

Elemento químico gaseoso, símbolo Kr, número atómico 36 y peso atómico 83.80. El kriptón es uno de los gases nobles. Es un gas incoloro, inodoro e insípido. Su principal aplicación es el llenado de lámparas eléctricas y aparatos electrónicos de varios tipos. Se utilizan ampliamente mezclas de kriptón-argón para llenar lámparas fluorescentes.
La única fuente comercial de kriptón estable es el aire, aunque se encuentran trazas en minerales y meteoritos. Una mezcla de isótopos estables y radiactivos de kriptón se produce en reactores nucleares a partir de uranio por fisión de neutrones, lenta. Se estima que aproximadamente 2 x 10-8% del peso de la Tierra es kriptón. El kriptón se encuentra también fuera de nuestro planeta.
Efectos del Kriptón sobre la salud
Inhalación: Este gas es inerte y está clasificado como un asfixiante simple. La inhalación de éste en concentraciones excesivas puede resultar en mareos, náuseas, vómitos, pérdida de consciencia y muerte. La muerte puede resultar de errores de juicio, confusión, o pérdida de la consciencia, que impiden el auto-rescate. A bajas concentraciones de oxígeno, la pérdida de consciencia y la muerte pueden ocurrir en segundos sin ninguna advertencia.
El efecto de los gases asfixiantes simples es proporcional a la cantidad en la cual disminuyen la cantidad (presión parcial) del oxígeno en el aire que se respira. El oxígeno puede reducirse a un 75% de su porcentaje normal en el aire antes de que se desarrollen síntomas apreciables. Esto a su vez requiere la presencia de un asfixiante simple en una concentración del 33% en la mezcla de aire y gas. Cuando el asfixiante simple alcanza una concentración del 50%, se pueden producir síntomas apreciables. Una concentración del 75% es fatal en cuestión de minutos.
Síntomas: Los primeros síntomas producidos por un asfixiante simple son respiración rápida y hambre de aire. La alerta mental disminuye y la coordinación muscular se ve perjudicada. El juicio se vuelve imperfecto y todas las sensaciones se deprimen. Normalmente resulta en inestabilidad emocional y la fatiga se presenta rápidamente. A medida que la asfixia progresa, pueden presentarse náuseas y vómitos, postración y pérdida de consciencia, y finalmente convulsiones, coma profundo y muerte.
Efectos ambientales del Kriptón
El kriptón es un gas raro atmosférico y como tal no es tóxico y es químicamente inerte. Las temperaturas extremadamente frías (-244oC) congelarán a los organismos al contacto, pero no se anticipan efectos ecológicos a largo plazo.
Consideraciones para su vertido: Cuando su vertido sea necesario, descargar el gas lentamente en un lugar exterior y bien ventilado lejano a áreas de trabajo y tomas de aire de edificios. No verter ningún gas residual en cilindros de aire comprimido. Devolver los cilindros al proveedor con alguna presión residual, y la válvula del cilindro fuertemente cerrada. Tener en cuenta que los requerimientos estatales y locales para los vertidos pueden ser más restrictivos o diferentes a las normas federales. Consultar las normas estatales y locales referentes al vertido adecuado de este material.

Alogenos

Los halógenos (del griego, formador de sales) son los elementos químicos que forman el grupo 17 (VII A, utilizado anteriormente) de la tabla periódica: flúor, cloro, bromo, yodo y astato.
En estado natural se encuentran como moléculas diatómicas químicamente activas [X2]. Para llenar por completo su último nivel energético (s2p5) necesitan un electrón más, por lo que tienen tendencia a formar un ion mononegativo, X-. Este ion se denomina haluro; las sales que lo contienen se conocen como haluros. Poseen una electronegatividad ≥ 2,5 según la escala de Pauling, presentando el flúor la mayor electronegatividad, y disminuyendo ésta al bajar en el grupo. Son elementos oxidantes (disminuyendo esta característica al bajar en el grupo), y el flúor es capaz de llevar a la mayor parte de los elementos al mayor estado de oxidación.


Nombre
Yodo
Número atómico
53
Valencia
+1,-1,3,5,7
Estado de oxidación
-1
Electronegatividad
2,5
Radio covalente (Å)
1,33
Radio iónico (Å)
2,16
Radio atómico (Å)
-
Configuración electrónica
[Kr]4d105s25p5
Primer potencial de ionización (eV)
10,51
Masa atómica (g/mol)
126,904
Densidad (g/ml)
4,94
Punto de ebullición (ºC)
183
Punto de fusión (ºC)
113,7
Descubridor
Bernard Courtois en 1811


Yodo

Elemento no metálico, símbolo I, número atómico 53, masa atómica relativa 126.904, el más pesado de los halógenos (halogenuros) que se encuentran en la naturaleza. En condiciones normales, el yodo es un sólido negro, lustroso, y volátil; recibe su nombre por su vapor de color violeta.
La química del yodo, como la de los otros halogenos, se ve dominada por la facilidad con la que el átomo adquiere un electrón para formar el ion yoduro, I-, o un solo enlace covalente –I, y por la formación, con elementos más electronegativos, de compuestos en que el estado de oxidación formal del yodo es +1, +3, +5 o +7. El yodo es más electropositivo que los otros halógenos y sus propiedades se modulan por: la debilidad relativa de los enlaces covalentes entre el yodo y elementos más electropositivos; los tamaños grandes del átomo de yodo y del ion yoduro, lo cual reduce las entalpías de la red cristalina y de disolución de los yoduros , en tanto que incrementa la importancia de las fuerzas de van der Waals en los compuestos del yodo, y la relativa facilidad con que se oxida éste.
El yodo se encuentra con profusión, aunque rara vez en alta concentración y nunca en forma elemental. A pesar de la baja concentración del yodo en el agua marina, cierta especie de alga puede extraer y acumular el elemento. En la forma de yodato de calcio, el yodo se encuentra en los mantos de caliche de Chile. Se encuentra también como ion yoduro en algunas salmueras de pozos de petróleo en California, Michigan y Japón.
El único isótopo estable del yodo es el 127I (53 protones, 74 neutrones). De los 22 isótopos artificiales (masas entre 117 y 139), el más importante es el 131I, con una vida media de 8 días; se utiliza mucho en el trabajo con trazadores radiactivos y ciertos procedimientos de radioterapia.
El yodo existe como moléculas diatómicas, I2 en las fases sólida, líquida y de vapor, aunque a temperaturas elevadas (>200ºC, o sea, 390ºF) la disociación para formar átomos es apreciable. Las cortas distancias intermoleculares I ... I en el sólido cristalino indican la presencia de fuertes fuerzas intermoleculares de van der Waals. El yodo es moderadamente soluble en líquidos no polares y el color violeta de las soluciones sugiere que se encuentran presentes las moléculas I2, como en su fase vapor.
Aun cuando, por lo común, es menos vigoroso en sus reacciones que los otros halógenos (halogenuros), el yodo se combina directamente con la mayor parte de los elementos; excepciones importantes son los gases nobles, el carbono, el nitrógeno y algunos metales nobles. Los derivados inorgánicos del yodo pueden agruparse en tres clases de compuestos: aquéllos con más elementos electropositivos, es decir, los yoduros; los formados con otros halógenos, y los formados con el oxígeno. Los compuestos organoyódicos caen en dos categorías: los yoduros y los derivados en que el yodo se encuentra en un estado de oxidación formal positiva, en virtud del enlace con otro elemento más electronegativo.
El yodo parece ser un elemento que, en cantidades muy pequeñas, es esencial para la vida animal y vegetal. El yoduro y el yodato que se encuentran en las aguas marinas entran en el ciclo metabólico de la mayor parte de la flora y la fauna marinas, mientras que en los mamíferos superiores el yodo se concentra en la glándula tiroides, allí se convierte en aminoácidos yodados (principalmente tiroxina y yodotirosinas). Éstos se encuentran almacenados en la tiroides como tiroglobulina y, aparentemente, la tiroxina es secretada por la glándula. La deficiencia de yodo en los mamíferos lleva al bocio, una condición en que la glándula tiroides crece más de lo normal.
Las propiedades bactericidas del yodo apoyan sus usos principales para el tratamiento de heridas o la esterilización del agua potable. Asimismo los compuestos de yodo se utilizan para tratar ciertas condiciones de la tiroides y del corazón, como suplemento dietético (en la forma de sales yodatadas) y en los medios de contraste para los rayos X.
Los usos industriales principales se encuentran en la fotografía, en donde el yoduro de plata es uno de los constituyentes de las emulsiones para películas fotográficas rápidas, y en la industria de los tintes, en donde los tintes a base de yodo se producen para el procesamiento de alimentos y para la fotografía en colores.

Efectos del Yodo sobre la salud

El yodo se añade a casi cualquier sal. Es un ingrediente del pan, los peces marinos y las plantas oceánicas. El yodo está presente de forma natural en los océanos y algunos peces marinos y plantas acuáticas lo almacenan en sus tejidos.
Muchas medicinas y limpiadores para heridas de la piel contienen yodo. También es un ingrediente de las tabletas purificadoras de agua que se usan para preparar agua potable.
El yodo es un material de construcción de las hormonas tiroideas que son esenciales para el crecimiento, el sistema nervioso y el metabolismo. Las personas que comen muy poco o nada de pan pueden experimentar carencia de yodo. Entonces la función de la glándula tiroides disminuirá y la glándula tiroides empezará a hincharse. Este fenómeno se llama estruma. Ahora esta afección es rara, ya que la sal de mesa lleva una pequeña dosis de yodo. Grandes cantidades de yodo pueden ser peligrosas porque la glándula tiroides trabajaría demasiado. Esto afecta al cuerpo entero; provoca taquicardias y pérdida de peso. El yodo elemental, I2, es tóxico, y su vapor irrita los ojos y los pulmones. La concentración máxima permitida en aire cuando se trabaja con yodo es de solamente 1 mg/m3. Todos los yoduros son tóxicos tomados en exceso.
El yodo 131 es uno de los radionucleidos involucrados en las pruebas nucleares atmosféricas, que comenzaron en 1945, con una prueba americana, y terminaron en 1980 con una prueba china. Se encuentra entre los radionucleidos de larga vida que han producido y continuarán produciendo aumento del riesgo de cáncer durante décadas y los siglos venideros. El iodo 131 aumenta el riesgo de cáncer y posiblemente otras enfermedades del tiroides y aquellas causadas por deficiencias hormonales tiroideas.
Efectos ambientales del Yodo
El yodo puede encontrarse en el aire, el agua y el suelo de forma natural. Las fuentes más importantes de yodo natural son los océanos. El yodo en el aire se puede combinar con partículas de agua y precipitar en el agua o los suelos. El yodo en los suelos se combina con materia orgánica y permanece en el mismo sitio por mucho tiempo. Las plantas que crecen en estos suelos pueden absorber yodo. EL ganado y otros animales absorberán yodo cuando coman esas plantas.

jueves, 7 de noviembre de 2013

anfigenos

El grupo de los anfígenos o calcógenos es también llamado familia del oxígeno y es el grupo conocido antiguamente como VIA, y actualmente grupo 16 (según la IUPAC) en la tabla periódica de los elementos, formado por los siguientes elementos: oxígeno (O), azufre (S), selenio (Se), telurio (Te) y polonio (Po).
Aunque todos ellos tienen seis electrones de valencia (última capa s2p4), sus propiedades varían de no metálicas a metálicas en cierto grado, conforme aumenta su número atómico.
El oxígeno y el azufre se utilizan abiertamente en la industria y el telurio y el selenio en la fabricación de semiconductores.


Nombre
Polonio
Número atómico
84
Valencia
4,6
Estado de oxidación
-
Electronegatividad
2,0
Radio covalente (Å)
-
Radio iónico (Å)
-
Radio atómico (Å)
1,76
Configuración electrónica
[Xe]4f145d106s26p4
Primer potencial de ionización (eV)
-
Masa atómica (g/mol)
210
Densidad (g/ml)
9,2
Punto de ebullición (ºC)
-
Punto de fusión (ºC)
254
Descubridor
Pierre y Marie Curie en 1898


Polonio

Elemento químico, símbolo Po, de número atómico 84. Marie Curie descubrió el radioisótopo 210Po en la pecblenda (uraninita), isótopo que es el penúltimo miembro de las series del decaimiento del radio. Todos los isótopos del polonio son radiactivos y de vida media corta, excepto los tres emisores alfa, producidos artificialmente. 208Po (2.9 años) y 209Po (100 años), y el natural, 210Po (138.4 días).
El polonio (210Po) se utiliza principalmente en la producción de fuentes de neutrones. Puede usarse también en eliminadores de estática, y cuando está incorporado en la aleación de los electrodos de las bujías, se dice que favorece las propiedades enfriantes en los motores de combustión interna.
La mayor parte de la química del polonio se ha determinado usando 210Po, 1 curie del cual pesa 222.2 microgramos; trabajar con cantidades considerables es peligroso y se requieren técnicas especiales. El polonio es más metálico que su homólogo inferior, el telurio. Como metal, es químicamente parecido al telurio y forma los compuestos rojo brillante SPoO3 y SePoO3. El metal es blando y sus propiedades físicas recuerdan las del talio, plomo y bismuto. Las valencias 2 y 4 están bien establecidas; hay algunas evidencias de hexavalencia. El polonio está colocado entre la plata y el telurio en la serie electroquímica.
Se conocen dos formas del dióxido: a baja temperatura, amarillo, cúbico centrado en las caras (tipo UO2), y a alta temperatura, rojo, tetragonal. Los halogenuros son covalentes, compuestos volátiles, y recuerdan a los análogos del telurio.

Efectos del Polonio sobre la salud

El polonio es estudiado en unos pocos laboratorios de investigación donde por su alta radioactividad como emisor de partículas alfa requiere técnicas y precauciones especiales de manejo.
El polonio 210 es el único componente del humo de los cigarros que ha producido cáncer por sí mismo en animales de laboratorio por inhalación. Los tumores aparecen con un nivel de polonio 210 cinco veces más bajo que la dosis de una persona que fuma mucho.
Las tasas de cáncer de pulmón entre los hombres no pararon de ascender desde ser raras en 1930 (4/100.000 por año) a ser el causante número uno de las muertes por cáncer en 1980 (72/100.000) a pesar de una reducción de casi el 20 por ciento de fumadores. Pero durante el mismo periodo, el nivel de polonio 210 en el tabaco americano se había triplicado. Esto coincidió con el aumento del uso de fertilizantes fosfatados por los cultivadores de tabaco.
El fosfato de calcio acumula uranio y libera gas radón lentamente. A la vez que el radón se desintegra, sus productos secundarios cargados eléctricamente se unen a partículas de polvo, que se adhieren a los pelos pegajosos del envés de las hojas del tabaco. Esto deja un depósito de polonio radioactivo y plomo en las hojas. Luego, el intenso calor localizado en el extremo ardiente de un cigarrillo volatiliza los metales radioactivos. Mientras que los filtros de cigarrillos pueden atrapar los carcinógenos químicos, no son efectivos contra los vapores radioactivos.
Los pulmones de un fumador crónico acaban teniendo un revestimiento radioactivo en una concentración mucho más alta que la del radón residencial. Estas partículas emiten radiación. Fumar dos paquetes de cigarrillos al día imparte una dosis de radiación de partículas alfa de alrededor de 1.300 milirem por año. Como comparación, la dosis de radiación anual del americano medio por inhalción de radón es de 200 milirem. Sin embargo, la dosis de radiación al “nivel de acción” del radón de 4 pCi/L es más o menos equivalente a fumar 10 cigarrillos al día.
Además, el polonio 210 es soluble y circula por el cuerpo a todos los tejidos y células a niveles mucho más altos que los procedentes del radón residencial. La prueba es que puede encontrarse en la sangre y orina de los fumadores. El polonio 210 circulante provoca daños genéticos y muerte temprana por enfermedades que recuerdan a los anteriores pioneros radiológicos: cáncer de hígado y de vesícula, úlcera estomacal. Leucemia, cirrosis del hígado y enfermedades cardiovasculares.
EL cirujano general C. Everett Koop declaró que la radioactividad, y no el alquitrán, es la responsable del 90% de todos los cánceres de pulmón atribuidos al tabaco. El Centro para Control de Enfermedades concluyó que “los americanos están expuestos a muchas más radiaciones procedentes del humo del tabaco que de cualquier otra fuente”.
Fumar cigarrillos provoca el 30% de todas las muertes por cáncer. Solamente una dieta pobre rivaliza con el tabaco como causa de cáncer en los E.E.U.U., causando un número comparable de muertes cada año. Sin embargo, el Instituto Nacional del Cáncer, con un presupuesto de 500 millones de dólares, no tiene fondos para la investigación del tabaco y el radón residencial como causantes de cáncer de pulmón, presumiblemente para proteger al público de temores infundados acerca de la radiación.

Efectos ambientales del Polonio

No se conocen bien las fuerzas ambientales y bioquímicas que pueden tender a reconcentrar estos materiales tóxicos en las células vivas.
Aunque el polonio se da en la naturaleza, se ha vuelto mucho más disponible para entrar en el agua, la comida, las células vivas y los tejidos a partir de la explosión de la minería que empezó poco después de la segunda guerra mundial.

Nitrogenoideos

El grupo del nitrógeno está compuesto por los elementos químicos del grupo 15 de la tabla periódica: nitrógeno (N), fósforo (P), arsénico (As), Antimonio (Sb), Bismuto (Bi) y el elemento sintético ununpentio (Uup), cuyo descubrimiento aún no ha sido confirmado. Estos elementos también reciben el nombre de pnicógenos1 o nitrogenoideos.


Nombre
Bismuto
Número atómico
83
Valencia
3,5
Estado de oxidación
+3
Electronegatividad
1,9
Radio covalente (Å)
1,46
Radio iónico (Å)
1,20
Radio atómico (Å)
1,70
Configuración electrónica
[Xe]4f145d106s26p3
Primer potencial
de ionización (eV)

8,07
Masa atómica (g/mol)
208,980
Densidad (g/ml)
9,8
Punto de ebullición (ºC)
1560
Punto de fusión (ºC)
271,3
Descubridor
Los antiguos



Bismuto

Elemento metálico, Bi, de número atómico 83 y peso atómico 208.980, pertenece al grupo Va de la tabla periódica. Es el elemento más metálico en este grupo, tanto en propiedades físicas como químicas. El único isótopo estable es el de masa 209. Se estima que la corteza terrestre contiene cerca de 0.00002% de bismuto. Existe en la naturaleza como metal libre y en minerales. Los principales depósitos están en Sudamérica, pero en Estados Unidos se obtiene principalmente como subproducto del refinado de los minerales de cobre y plomo.
El principal uso del bismuto está en la manufactura de aleaciones de bajo punto de fusión, que se emplean en partes fundibles de rociadoras automáticas, soldaduras especiales, sellos de seguridad para cilindros de gas comprimido y en apagadores automáticos de calentadores de agua eléctricos y de gas. Algunas aleaciones de bismuto que se expanden al congelarse se utilizan en fundición y tipos metálicos. Otra aplicación importante es la manufactura de compuestos farmacéuticos.
El bismuto es un metal cristalino, blanco grisáceo, lustroso, duro y quebradizo. Es uno de los pocos metales que se expanden al solidificarse. Su conductividad térmica es menor que la de cualquier otro metal, con excepción del mercurio. El bismuto es inerte al aire seco a temperatura ambiente, pero se oxida ligeramente cuando está húmedo. Forma rápidamente una película de óxido a temperaturas superiores a su punto de fusión, y se inflama al llegar al rojo formando el óxido amarillo, Bi2O3. El metal se combina en forma directa con los halógenos y con azufre, selenio y telurio, pero no con nitrógeno ni fósforo. No lo ataca el agua desgasificada a temperaturas comunes, pero se oxida lentamente al rojo por vapor de agua.
En casi todos los compuestos de bismuto está en forma trivalente. No obstante, en ocasiones puede ser pentavalente o monovalente. El bismutato de sodio y el pentafluoruro de bismuto son quizá los compuestos más importantes de Bi(V). El primero es un agente oxidante poderoso y el último un agente fluorante útil para compuestos orgánicos.

Efectos del Bismuto sobre la salud

El bismuto y sus sales pueden causar daños en el hígado, aunque el grado de dicho daño es normalmente moderado. Grandes dosis pueden ser mortales. Industrialmente es considerado como uno de los metales pesados menos tóxicos. Envenenamiento grave y a veces mortal puede ocurrir por la inyección de grandes dosis en cavidades cerradas y de aplicación extensiva a quemaduras (en forma de compuestos solubles del bismuto). Se ha declarado que la administración de bismuto debe ser detenida cuando aparezca gingivitis, ya que de no hacerlo es probable que resulte en stomatitis ulcerosa. Se pueden desarrollar otros resultados tóxicos, tales como sensación indefinida de malestar corporal, presencia de albúmina u otra sustancia proteica en la orina, diarrea, reacciones cutáneas y a veces exodermatitis grave.
Vías de entrada: Inhalación, piel e ingestión.
Efectos agudos: Inhalación: ENVENENAMIENTO. Puede ser un gas desagradable provocando irritación respiratoria. Puede causar mal aliento, sabor metálico y gingivitis. Ingestión: ENVENENAMIENTO. Puede causar náuseas, pérdida de apetito y de peso, malestar, albuminuria, diarrea, reacciones cutáneas, estomatitis, dolor de cabeza, fiebre, falta de sueño, depresión, dolores reumáticos y una línea negra se puede formar en las encías debido al depósito de sulfuro de bismuto. Piel: Puede provocar irritación. Ojos: Puede provocar irritación.
Afecciones generalmente agravadas por la exposición al bismuto: Desórdenes cutáneos y respiratorios pre-existentes.
El bismuto no se considera un carcinógeno para los humanos

Efectos ambientales del Bismuto

El bismuto metálico no se considera tóxico y presenta una amenaza mínima para el medio ambiente. Los compuestos del bismuto son generalmente muy poco solubles pero deben ser manejados con cuidado, ya que solo se dispone de información limitada de sus efectos y destino en el medio ambiente.
 
 

Carbonoideos

El grupo IV de la tabla periódica de los elementos (antiguo grupo IV A), también conocido como grupo del carbono o de los carbonoideos, está formado por los siguientes elementos: carbono (C), silicio (Si), germanio (Ge), estaño (Sn) y plomo (Pb).
La mayoría de los elementos de este grupo son muy conocidos y difundidos, especialmente el carbono, elemento fundamental de la química orgánica. A su vez, el silicio es uno de los elementos más abundantes en la corteza terrestre (28%), y de gran importancia en la sociedad a partir del siglo XXI, ya que es el elemento principal de los circuitos integrados.
Al bajar en el grupo, estos elementos van teniendo características cada vez más metálicas: el carbono es un no metal, el silicio y el germanio son semimetales, y el estaño y el plomo son metales.






Nombre
Germanio
Número atómico
32
Valencia
4
Estado de oxidación
+4
Electronegatividad
1,8
Radio covalente (Å)
1,22
Radio iónico (Å)
0,53
Radio atómico (Å)
1,37
Configuración electrónica
[Ar]3d104s24p2
Primer potencial de ionización (eV)
8,16
Masa atómica (g/mol)
72,59
Densidad (g/ml)
5,32
Punto de ebullición (ºC)
2830
Punto de fusión (ºC)
937,4
Descubridor
Clemens Winkler 1886



Germanio

Elemento químico, metálico, gris plata, quebradizo, símbolo Ge, número atómico 32, peso atómico 72.59, punto de fusión 937.4ºC (1719ºF) y punto de ebullición 2830ºC (5130ºF), con propiedades entre el silicio y estaño. El germanio se encuentra muy distribuido en la corteza terrestre con una abundancia de 6.7 partes por millon (ppm). El germanio se halla como sulfuro o está asociado a los sulfuros minerales de otros elementos, en particular con los del cobre, zinc, plomo, estaño y antimonio.
El germanio tiene una apariencia metálica, pero exhibe las propiedades físicas y químicas de un metal sólo en condiciones especiales, dado que está localizado en la tabla periódica en donde ocurre la transición de metales a no metales. A temperatura ambiente hay poca indicación de flujo plástico y, en consecuencia, se comporta como un material quebradizo.
El germanio es divalente o tetravalente. Los compuestos divalentes (óxido, sulfuro y los halogenuros) se oxidan o reducen con facilidad. Los compuestos tetravalentes son más estables. Los compuestos organogermánicos son numerosos y, en este aspecto, el germanio se parece al silicio. El interés en los compuestos organogermánicos se centra en su acción biológica. El germanio y sus derivados parecen tener una toxicidad menor en los mamíferos que los compuestos de estaño o plomo.
Las propiedades del germanio son tales que este elemento tiene varias aplicaciones importantes, especialmente en la industria de los semiconductores. El primer dispositivo de estado sólido, el transistor, fue hecho de germanio. Los cristales especiales de germanio se usan como sustrato para el crecimiento en fase vapor de películas finas de GaAs y GaAsP en algunos diodos emisores de luz. Se emplean lentes y filtros de germanio en aparatos que operan en la región infrarroja del espectro. Mercurio y cobre impregnados de germanio son utilizados en detectores infrarrojos; los granates sintéticos con propiedades magnéticas pueden tener aplicaciones en los dispositivos de microondas para alto poder y memoria de burbuja magnética; los aditivos de germanio incrementa los amper-horas disponibles en acumuladores.
Efectos del hidruro de Germanio y el tetrahidruro de germanio sobre la salud
El hidruro de germanio y el tetrahidruro de germanio son extremadamente inflammables e incluso explosives cuando son mezclados con el aire. Inhalación: Calambres abdominales. Sensación de quemadura. Tos. Piel: Enrojecimiento. Dolor. Ojos: Enrojecimiento. Dolor.
Peligros físicos: El gas es más pesado que el aire y puede viajar por el suelo; es possible la ignición a distancia.
Vías de exposición: La sustancia puede ser absorbida por el cuerpo por inhalación.
Riesgo de inhalación: En caso de pérdidas en el contenedor se alcanzará rápidamente una concentración peligrosa del gas en el aire.
Efectos de la exposición a corto plazo: La sustancia irrita los ojos, la piel y el tracto respiratorio. La sustancia puede tener efectos en la sngre, resultando en lesiones de las células sanguíneas. La exposición puede resultar en la muerte.


Efectos ambientales del Germanio

Como metal pesado se considera que tiene algún efecto negativo en los ecosistemas acuáticos.
 

 

Boroideos

El grupo del boro, elementos térreos o boroideos es una serie de elementos que están situados en el grupo 13 de la tabla periódica. Su nombre proviene de Tierra, ya que el aluminio es el elemento más abundante en ella, llegando a un 7.5%. Tienen tres electrones en su nivel energético más externo. Su configuración electrónica es ns2np1.
El primer elemento del grupo 13 es el boro(B) (aunque también se lo conoce como grupo del aluminio por ser este altamente usado actualmente), un metaloide con un punto de fusión muy elevado y en el que predominan las propiedades no metálicas. Los otros elementos que comprenden este grupo son: aluminio(Al), galio (Ga), indio (In), y talio(Ti), que forman iones con un carga triple positiva (3+), salvo el talio que lo hace con una carga monopositiva (1+).
La característica del grupo es que los elementos tienen tres electrones en su capa más externa, por lo que suelen formar compuestos en los que presentan un estado de oxidación +3. El talio difiere de los demás en que también es importante su estado de oxidación +1. Esta baja reactividad del par de electrones es conforme se baja en el grupo se presenta también en otros grupos, se denomina efecto del par inerte y se explica considerando que al bajar en el grupo las energías medias de enlace van disminuyendo.



Nombre
Talio
Número atómico
81
Valencia
1,3
Estado de oxidación
+3
Electronegatividad
1,8
Radio covalente (Å)
1,48
Radio iónico (Å)
0,95
Radio atómico (Å)
1,71
Configuración electrónica
[Xe]4f145d106s26p1
Primer potencial de ionización (eV)
6,15
Masa atómica (g/mol)
204,37
Densidad (g/ml)
11,85
Punto de ebullición(ºC)
1473
Punto de fusión (ºC)
304
Descubridor
Sir William Crookes en 1861



Talio

Elemento químico de símbolo Tl, número atómico 81 y peso atómico relativo 204.37. La notación de los electrones de valencia correspondiente al estado basal es 6s26p1, que explica un máximo de oxidación de III en sus compuestos. Se conocen también compuestos con estado de oxidación de I y con estado de oxidación evidente II.
El talio se encuentra en la corteza terrestre en proporción de 0.00006%, principalmente como compuesto minoritario en minerales de hierro, cobre, sulfuros y seleniuros. Los minerales de talio se consideran raros. Tiene un empleo importante en los componentes electrónicos; por ejemplo, los cristales de yoduro de sodio, activados por talio y usados en tubos fotomultiplicadores. También se utiliza en aleaciones de bajo punto de fusión, lentes ópticas y sellos de vidrio para almacenar componentes electrónicos. Los compuestos de talio son muy tóxicos para los seres humanos y otras formas de vida.
La insolubilidad de los cloruros, bromuros y yoduros de talio(I) permite prepararlos mediante precipitación directa de soluciones acuosas. Por otra parte, el fluoruro es soluble en agua. El cloruro de talio(I) se parece al cloruro de plata en su fotosensibilidad. El óxido de talio(I) es un polvo negro que reacciona con el agua dando una solución de la cual puede recristalizarse el hidróxido de talio amarillo. El hidróxido es una base fuerte y absorbe dióxido de carbono de la atmósfera.
El talio también forma compuestos organometálicos de las siguientes clases generales: R3Tl, R2TlX y RTlX2, donde R puede ser un grupo arilo o alquilo y X un halógeno.

Efectos del Talio sobre la salud

El Talio ocurre de forma natural en pequeñas cantidades. No es muy usado por los humanos, solamente en venenos de rata y como substancias en las industria electro técnica e industrias químicas. Estas aplicaciones pueden causar exposiciones para los humanos a substancias del Talio. El cuerpo humano absorbe el Talio muy eficientemente, especialmente a través de la piel, los órganos respiratorios y el tracto digestivo.
El envenenamiento por Talio es mayormente causado por una toma accidental de veneno de rata, el cual contiene grandes cantidades de sulfato de Talio. Consecuentemente, dolores estomacales aparecerán y el sistema nervioso será dañado. En algunos casos los daños son irreversibles y la muerte sigue pronto.
Cuando los humanos sobreviven al envenenamiento por Talio a menudo las consecuencias son la perturbación del sistema nervioso, así como son temblores, parálisis y cambios en el comportamiento que permanecerán para siempre.
En niños no nacidos el envenenamiento por Talio puede causar desordenes congénitos. Debido a la acumulación de Talio en los cuerpos de los humanos, efectos crónicos, como es cansancio, dolores de cabeza, depresiones, pérdida del apetito, dolor de piernas, pérdida del pelo y problemas en la vista.
Otros efectos que pueden estar relacionados con el envenenamiento por Talio son dolor nervioso y dolor de las articulaciones. Estas son las consecuencias de la toma de Talio a través de la comida.

Efectos ambientales del Talio

El Talio es soluble en agua en parte y consecuentemente este puede esparcirse en el agua subterránea cuando los suelos contienen grandes cantidades de este. El Talio también puede esparcirse por la absorción del lodo. Hay indicadores de que el Talio es muy móvil en los suelos.
El Talio es my tóxico par las ratas y es aplicado como raticida por esta cualidad. El Talio también tiene efectos negativos sobre las plantas, como el cambio de color en las hojas y la disminución del crecimiento. Mamíferos, como los conejos, son suceptibles a los efectos tóxicos del Talio como los humanos.
 


 

Metales de transicion

Los elementos de transición son aquellos elementos químicos que están situados en la parte central del sistema periódico, en el bloque d, cuya principal característica es la inclusión en su configuración electrónica del orbital d, parcialmente lleno de electrones. Esta definición se puede ampliar considerando como elementos de transición a aquellos que poseen electrones alojados en el orbital d, esto incluiría a zinc, cadmio, y mercurio. La IUPAC define un metal de transición como "un elemento cuyo átomo tiene una subcapa d incompleta o que puede dar lugar a cationes".




Darmstadtio
Símbolo químico Ds
Número atómico 110
Grupo 10
Periodo 7
Aspecto desconocido, probablemente metálico plateado blanco o gris
Bloque d
Masa atómica 281 u
Configuración electrónica probablemente [Rn] 5f14 6d9 7s1 un supuesto basado en el platino  

Propiedades del darmstadtio

Los metales de transición, también llamados elementos de transición es el grupo al que pertenece el darmstadtio. En este grupo de elementos químicos al que pertenece el darmstadtio, se encuentran aquellos situados en la parte central de la tabla periódica, concretamente en el bloque d. Entre las características que tiene el darmstadtio, así como las del resto de metales de tansición se encuentra la de incluir en su configuración electrónica el orbital d, parcialmente lleno de electrones. Propiedades de este tipo de metales, entre los que se encuentra el darmstadtio son su elevada dureza, el tener puntos de ebullición y fusión elevados y ser buenos conductores de la electricidad y el calor.
El estado del darmstadtio en su forma natural es desconocido, presuntamente sólido. El darmstadtio es un elmento químico de aspecto desconocido, probablemente metálico plateado blanco o gris y pertenece al grupo de los metales de transición. El número atómico del darmstadtio es 110. El símbolo químico del darmstadtio es Ds.

Propiedades atómicas del darmstadtio

La masa atómica de un elemento está determinado por la masa total de neutrones y protones que se puede encontrar en un solo átomo perteneciente a este elemento. En cuanto a la posición donde encontrar el darmstadtio dentro de la tabla periódica de los elementos, el darmstadtio se encuentra en el grupo 10 y periodo 7. El darmstadtio tiene una masa atómica de 2,1 u.
La configuración electrónica del darmstadtio es probablemente [Rn] 5f14 6d9 7s1 un supuesto basado en el platino. La configuración electrónica de los elementos, determina la forma el la cual los electrones están estructurados en los átomos de un elemento.